Evolving Rules-based Control

نویسندگان

  • P. Angelov
  • R. Buswell
  • J. Wright
  • D. Loveday
چکیده

An approach to control non-linear objects based on evolving Rule-based (eR) models is presented in the paper. Fuzzy rules, representing the structure of the controller are generated based on data collected during the process of control using newly introduced technique for on-line identification of Takagi-Sugeno type of fuzzy rule-based models. Initially, the process is supposed to be controlled for few time steps by any other conventional type of controller (P, PID or a fuzzy one with a fixed structure determined off-line). Then, in on-line mode the output of the plant under control (including its dynamic) and the respective control signal applied has been memorised and stored. These data has been used to train in a non-iterative way the eR model representing the fuzzy controller, which aim is to control the plant at a given set point. The indirect adaptive control approach has been used in combination with the newly introduced on-line identification technique based on unsupervised learning of antecedent and consequent parts separately. This approach exploits the quasi-linear nature of Takagi-Sugeno models and builds-up the control rule-base structure and adapts it in on-line mode. The method is illustrated with an example from air-conditioning systems, though it has wider potential applications.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Identification of evolving fuzzy rule-based models

An approach to identification of evolving fuzzy rule-based (eR) models is proposed in this paper. eR models implement a method for the noniterative update of both the rule-base structure and parameters by incremental unsupervised learning. The rule-base evolves by adding more informative rules than those that previously formed the model. In addition, existing rules can be replaced with new rule...

متن کامل

Potentials of Evolving Linear Models in Tracking Control Design for Nonlinear Variable Structure Systems

Evolving models have found applications in many real world systems. In this paper, potentials of the Evolving Linear Models (ELMs) in tracking control design for nonlinear variable structure systems are introduced. At first, an ELM is introduced as a dynamic single input, single output (SISO) linear model whose parameters as well as dynamic orders of input and output signals can change through ...

متن کامل

Dynamic Evolving Neuro-Fuzzy Inference System (DENFIS): On-line learning and Application for Time-Series Prediction

This paper introduces a new type of fuzzy inference systems, denoted as DENFIS (dynamic evolving neural-fuzzy system), for adaptive on-line learning, and its application for dynamic time series prediction. DENFIS evolve through incremental, hybrid (supervised/unsupervised), learning and accommodate new input data, including new features, new classes, etc. through local element tuning. New fuzzy...

متن کامل

Control of Multiagent Formations: a Multiplex Information Networks-based Approach∗

This paper makes the first attempt to show how information exchange rules represented by a network having multiple layers (multiplex information networks) can be designed for enabling spatially evolving multiagent formations. Toward this goal, we consider the invariant formation problem and introduce a distributed control architecture that allows capable agents to spatially alter the resulting ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017